ARCS AND VALUATIONS

SHIHOKO ISHII

In [7], Nash posed a problem: if the set of the families of arcs through the singularities on a variety (these families are called the Nash components) corresponds bijectively to the set of essential divisors of resolutions of the singularities. This problem is affirmatively answered for some 2-dimensional singularities by A. Reguera and M. Lejeune-Jalabert [8], [6], [9] and toric singularities of arbitrary dimension by S. Ishii and J. Kollár [5]. On the other hand this problem is negatively answered in general. The paper [5] gives a counter example of dimension greater than or equal to 4. Therefore the Nash problem should be changed to a problem to determine the divisors corresponding to the Nash components.

We can generalize this problem into the characterization problem for valuations corresponding to the irreducible components of contact loci Cont^{$\geq m$}(\mathfrak{a}) which are introduced by L. Ein, R. Lazarsfeld and M. Mustață ([1]). In this talk we introduce the maximal divisorial set $C_X(v)$ in the arc space of a variety X corresponding to a divisorial valuation v. An irreducible component of a contact locus is a maximal divisorial set. In order to characterize the valuations corresponding to the irreducible components of a contact locus, it is essential to translate the inclusion relation between two maximal divisorial sets to a relation between the corresponding divisorial valuations. The most natural candidate for the translated relation is the value-inequality relation, i.e., v(f) < v'(f) for every regular function f on the affine variety X. If the variety X and the valuations v, v' are toric, we have the equivalence: v(f) < v'(f) for every regular function f on X if and only if $C_X(v) \supset C_X(v')$. We study this value-inequality relation. We describe a maximal divisorial set on the arc space of non-singular variety and determine the necessary and sufficient condition for the value-inequality relation. As a result we show that this most natural relation is not the translation of the inclusion relation of the maximal divisorial sets.

References

 L. Ein, R. Lazarsfeld and M. Mustaţă, Contact loci in arc spaces, Comp. Math., 140, No 5 (2004) 1229–1244.

SHIHOKO ISHII

- W. Fulton, Introduction to Toric Varieties, Annals of Math. St. 131, (1993) Princeton University Press.
- 3. S. Ishii, The arc space of a toric variety, J. Algebra 278 (2004) 666–683.
- 4. S. Ishii, Arcs, valuations and the Nash map, preprint math.AG/0410526, to appear in J. reine angew. Math.
- S. Ishii and J. Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120, No.3 (2003) 601-620.
- M. Lejeune-Jalabert and A. J. Reguera-Lopez, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121, (1999) 1191–1213.
- 7. J. F. Nash, Arc structure of singularities, Duke Math. J. 81, (1995) 31-38.
- A. J. Reguera-Lopez, Families of arcs on rational surface singularities, Manuscr. Math. 88, (1995) 321–333.
- A. J. Reguera, Image of Nash map in terms of wedges, C. R. Acad. Sci. Ser. I, 338, (2004) 385–390.

Department of Mathematics, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo, Japan E-mail : shihoko@math.titech.ac.jp

 $\mathbf{2}$