ARCS AND VALUATIONS

SHIHOKO ISHII

In [7], Nash posed a problem: if the set of the families of arcs through the singularities on a variety (these families are called the Nash components) corresponds bijectively to the set of essential divisors of resolutions of the singularities. This problem is affirmatively answered for some 2-dimensional singularities by A. Reguera and M. LejeuneJalabert [8], [6], [9] and toric singularities of arbitrary dimension by S. Ishii and J. Kollár [5]. On the other hand this problem is negatively answered in general. The paper [5] gives a counter example of dimension greater than or equal to 4 . Therefore the Nash problem should be changed to a problem to determine the divisors corresponding to the Nash components.

We can generalize this problem into the characterization problem for valuations corresponding to the irreducible components of contact loci Cont ${ }^{\geq m}(\mathfrak{a})$ which are introduced by L. Ein, R. Lazarsfeld and M. Mustaţă ([1]). In this talk we introduce the maximal divisorial set $C_{X}(v)$ in the arc space of a variety X corresponding to a divisorial valuation v. An irreducible component of a contact locus is a maximal divisorial set. In order to characterize the valuations corresponding to the irreducible components of a contact locus, it is essential to translate the inclusion relation between two maximal divisorial sets to a relation between the corresponding divisorial valuations. The most natural candidate for the translated relation is the value-inequality relation, i.e., $v(f) \leq v^{\prime}(f)$ for every regular function f on the affine variety X. If the variety X and the valuations v, v^{\prime} are toric, we have the equivalence: $v(f) \leq v^{\prime}(f)$ for every regular function f on X if and only if $C_{X}(v) \supset C_{X}\left(v^{\prime}\right)$. We study this value-inequality relation. We describe a maximal divisorial set on the arc space of non-singular variety and determine the necessary and sufficient condition for the value-inequality relation. As a result we show that this most natural relation is not the translation of the inclusion relation of the maximal divisorial sets.

References

[^0]2. W. Fulton, Introduction to Toric Varieties, Annals of Math. St. 131, (1993) Princeton University Press.
3. S. Ishii, The arc space of a toric variety, J. Algebra 278 (2004) 666-683.
4. S. Ishii, Arcs, valuations and the Nash map, preprint math.AG/0410526, to appear in J. reine angew. Math.
5. S. Ishii and J. Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120, No. 3 (2003) 601-620.
6. M. Lejeune-Jalabert and A. J. Reguera-Lopez, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121, (1999) 1191-1213.
7. J. F. Nash, Arc structure of singularities, Duke Math. J. 81, (1995) 31-38.
8. A. J. Reguera-Lopez, Families of arcs on rational surface singularities, Manuscr. Math. 88, (1995) 321-333.
9. A. J. Reguera, Image of Nash map in terms of wedges, C. R. Acad. Sci. Ser. I, 338, (2004) 385-390.

Department of Mathematics, Tokyo Institute of Technology, OhOkayama, Meguro, Tokyo, Japan
E-MAIL : SHIHOKO@MATH.TITECH.AC.JP

[^0]: 1. L. Ein, R. Lazarsfeld and M. Mustaţă, Contact loci in arc spaces, Comp. Math., 140, No 5 (2004) 1229-1244.
